Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
99
Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.
Задачу решили:
44
всего попыток:
86
Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z?
Задачу решили:
133
всего попыток:
250
Найдите (не пользуясь компьютером!) остаток от деления числа 9876543211234567689 на 7.
Задачу решили:
99
всего попыток:
172
Имеется число из 11 цифр, среди которых нет нулей. Все его цифры переписали в обратном порядке и получившееся число вычли из исходного. Найдите наименьшее положительное число, которое могло получиться в результате.
Задачу решили:
174
всего попыток:
252
Шла торговка на рынок продавать пирожки. По дороге она проголодалась и съела сначала пирожок и половину остатка, затем ещё пирожок и пол-остатка, затем ещё пирожок и пол-остатка. А затем по дороге воры украли 7 пирожков и пол-остатка. На рынок торговка принесла 1 пирожок. Сколько пирожков было?
Задачу решили:
82
всего попыток:
206
Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)
Задачу решили:
87
всего попыток:
123
Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.
Задачу решили:
33
всего попыток:
76
Ученику задали напечатать на пишущей машинке подряд первые 2011 натуральных чисел — каждое следующее число на новой строке. Но у пишущей машинки оказалась сломана клавиша с символом 2; и ученик решил пропускать все числа, в записи которых требуется эта клавиша, но напечатать 2011 чисел. Однако он был трудоголиком, вошёл во вкус дела и напечатал 2011·1020 чисел. Какое число было напечатано на последней строке?
Задачу решили:
71
всего попыток:
99
В одном шотландском городке стояла школа, в которой учились ровно 12345678910 школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?
Задачу решили:
60
всего попыток:
150
Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|