img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 59
Задача опубликована: 24.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеется квадрат клетчатой бумаги размером 102×102 клеток и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? (Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.)

+ 4
  
Задачу решили: 40
всего попыток: 91
Задача опубликована: 29.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

Задачу решили: 28
всего попыток: 51
Задача опубликована: 04.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.

+ 7
  
Задачу решили: 70
всего попыток: 72
Задача опубликована: 18.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

К натуральному числу N приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до N. Найдите N.

Задачу решили: 34
всего попыток: 47
Задача опубликована: 15.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

+ 2
  
Задачу решили: 33
всего попыток: 55
Задача опубликована: 22.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?

Задачу решили: 42
всего попыток: 47
Задача опубликована: 25.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

У многогранника, описанного около сферы, большой гранью будем называть такую, что проекция сферы на плоскость целиком попадает в грань. Какое максимальное число больших гранией может быть у многогранника?

Задачу решили: 34
всего попыток: 60
Задача опубликована: 09.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Задачу решили: 23
всего попыток: 34
Задача опубликована: 11.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади.

+ 5
  
Задачу решили: 37
всего попыток: 65
Задача опубликована: 27.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: VFChistov (Виктор Чистяков)

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.