Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
90
всего попыток:
436
На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
118
всего попыток:
300
На какое наименьшее количество частей нужно разрезать прямоугольник 25×36, чтобы из них можно было сложить квадрат? (Нужно использовать все части без наложений и пустот.)
Задачу решили:
41
всего попыток:
50
Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.
Задачу решили:
145
всего попыток:
168
На гипотенузе AB прямоугольного треугольника ABC взяты две точки M и N так, что AC=AM, BC=BN. Сколько градусов составляет величина угла MCN?
Задачу решили:
70
всего попыток:
103
На плоскости проведены n прямых. Каждая пересекает ровно 2011 других. Найдите все возможные значения n. В ответе укажите сумму всех значений.
Задачу решили:
86
всего попыток:
161
Какое наименьшее число прямых можно провести на плоскости так, чтобы получилось по крайней мере 6 точек, в каждой из которых пересекаются ровно 3 прямые, и хотя бы 4 точки, в каждой из которых пересекаются ровно 2 прямые?
Задачу решили:
63
всего попыток:
172
Даны две параллельные прямые, расстояние между которыми — целое число. На одной прямой находится точка A, а на другой — точки B, C, D, E (именно в таком порядке). Расстояние между любыми двумя из этих пяти точек — натуральное число, BC=4. Найдите наименьшее расстояние между A и E.
Задачу решили:
36
всего попыток:
193
Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?
Задачу решили:
83
всего попыток:
250
В какое максимальное число цветов можно раскрасить клетки доски 10×10 так, чтобы у каждой клетки среди ее соседей (по стороне) были хотя бы две клетки, окрашенные в тот же цвет?
Задачу решили:
91
всего попыток:
170
Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|