img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 102
всего попыток: 114
Задача опубликована: 20.06.12 08:00
Прислал: pvpsaba img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: 0Vlas

Найти все простые числа p и q, что 2p-q2=1999. В ответ введите максимальное возможное p.

 

+ 10
+ЗАДАЧА 762. Хитрое уравнение (И. Андреев, Н. Кушпель, Ф. Бахарев, Ф. Петров)
  
Задачу решили: 128
всего попыток: 136
Задача опубликована: 11.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Решите уравнение в натуральных числах 
n3-5n+10=2k. Чему равно nk?

+ 10
+ЗАДАЧА 803. Числа (Ростовский Д.)
  
Задачу решили: 117
всего попыток: 132
Задача опубликована: 15.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления  х-у на 23

Задачу решили: 51
всего попыток: 123
Задача опубликована: 22.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Найдите наименьшее натуральное m, для которого следующее выражение является целым числом:

180! \left( \cfrac{1}{181} + \cfrac{(-1)^m m!}{m + 181} \right) + 
\cfrac{1}{181} + \cfrac{1}{m + 181}.

 

Задачу решили: 59
всего попыток: 75
Задача опубликована: 18.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Последовательности (an) и (bn) заданы условиями an+3 = an+2+2an+1+an при n ? 0, a0 = 1, a1 = 2, a2 = 3; bn+3 = bn+2+2bn+1+bn при n ? 0, b0 = 3, b1 = 2, b2 = 1. Сколько существует чисел, встречающихся в обеих последовательностях?

Задачу решили: 45
всего попыток: 55
Задача опубликована: 01.03.13 08:00
Прислал: Freeplay img
Источник: Открытая городская олимпиада Нижнего Новгород...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: farid2012 (Фарид Рахматуллин)

Натуральное число anan-1...a1 назовём полным, если для любого набора номеров (возможно, одного) его разрядов сумма этих номеров равна сумме некоторых (возможно, одной) цифр самого числа (например, a4a3a2a1=3116 - полное число). Найдите наибольшее полное число.

Задачу решили: 63
всего попыток: 89
Задача опубликована: 03.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Найдите сумму всех натуральных p таких, что число 4x2 + p — простое при всех x = 0, 1, …, p-1.  

Задачу решили: 37
всего попыток: 67
Задача опубликована: 19.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На доске написано 100 единиц. За один ход разрешается стереть любое из чисел и одновременно написать два новых вдвое меньших числа. При каком наибольшем натуральном k можно гарантировать, что в наборе в любой момент времени найдётся k равных чисел?

Задачу решили: 68
всего попыток: 95
Задача опубликована: 15.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Последовательность {an} (= 0, 1, 2, …) задана формулой an = 23n+36n+2+56n+2. Найдите НОД(a0, a1, …, a2007).

Задачу решили: 81
всего попыток: 94
Задача опубликована: 27.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Натуральное число n возвели в некоторую натуральную степень, после чего у результата стерли последние две цифры и снова получили число n. Найдите максимально возможное значение числа n.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.