Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Задачу решили:
161
всего попыток:
280
На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три?
Задачу решили:
187
всего попыток:
229
В примере на сложение шестизначных чисел каждую цифру заменили на букву, после чего получилось: DONALD+GERALD=ROBERT (разным цифрам соответствуют разные буквы, одинаковым цифрам — одинаковые буквы). Чему равна сумма?
(По непроверенной информации, Генри Форд в качестве вступительного экзамена на должность инженера предлагал решить эту задачу и принимал только тех, кто укладывался в 15 минут.)
Задачу решили:
38
всего попыток:
145
Два различных числа называются похожими, если их десятичные записи совпадают во всех разрядах, кроме одного. Найдите максимальное количество семизначных чисел, среди которых нет двух похожих.
Задачу решили:
72
всего попыток:
156
Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)
Задачу решили:
52
всего попыток:
77
На доске написаны два числа: 0 и 1. На первом шаге напишем между ними их сумму и получим: 0 1 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Таким образом, после второго шага получим: 0 1 1 2 1, после третьего — 0 1 1 2 1 3 2 3 1 и т.д. Найдите сумму всех чисел, написанных после n шагов.
(Пожалуйста, не присылайте файлов!)
Задачу решили:
120
всего попыток:
274
К положительному целому числу x, записанному в десятичной системе исчисления без незначащих нулей впереди, приписали это же число и получили десятичную запись нового числа y — дубля x. (Например, если x=12, то y=1212.) Найдите сумму всех различных целых значений дроби y/x2.
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Задачу решили:
215
всего попыток:
242
Сумма двух чисел равна 480. Если у первого числа зачеркнуть последнюю цифру, то получится второе число, делённое на 7. Найдите эти числа. (В ответе укажите первое число.)
Задачу решили:
135
всего попыток:
315
Найдите последние три цифры числа .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|