Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
78
всего попыток:
124
Часы показывают время в первой половине дня. Определите время.
Задачу решили:
25
всего попыток:
64
На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.
Задачу решили:
36
всего попыток:
80
Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
37
всего попыток:
61
Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?
Задачу решили:
27
всего попыток:
95
40 пиратов и капитан делят клад в 100 золотых монет. Пираты хотят получить вместе 80 монет, а капитан хочет получить все. Он предлагает игру. Капитан делит все монеты на 2 кучки, потом на 3 и так далее, пока все кучки не станут равными одной монете. Всего 99 ходов. Если на каком-либо ходе пираты найдут 40 кучек, сумма монет в которых равна 80, то они получают эти деньги. На каком минимальном ходу пираты обязательно получат деньги, как бы ни делил их капитан?
Задачу решили:
29
всего попыток:
34
Треугольник ABC вписан в окружность. Точки M и H такие, что отрезок AM является диаметром, а отрезок AH перпендикулярен стороне BC. Докажите, что |BH|=|MC|.
Задачу решили:
33
всего попыток:
52
На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.
Задачу решили:
15
всего попыток:
58
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|