Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
121
всего попыток:
172
Найдите минимальное значение выражения , где x и y — произвольные действительные числа.
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
132
всего попыток:
232
Из деревни Каспениада в другие деревни можно попасть двумя способами:
Задачу решили:
74
всего попыток:
108
Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?
Задачу решили:
126
всего попыток:
268
Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?
Задачу решили:
105
всего попыток:
119
В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)
Задачу решили:
122
всего попыток:
178
Вычислите
Задачу решили:
79
всего попыток:
205
Найдите предел 13-ой производной функции .
Задачу решили:
49
всего попыток:
520
Соревнование оценивается 8 судьями, каждый из которых ставит участнику "хорошо" или "плохо". Известно, что для любых двух участников двое судей поставили обоим "хорошо", двое – "хорошо" первому и "плохо" второму, двое – "плохо" первому и "хорошо" второму, и двое обоим поставили "плохо". Определите максимально возможное количество участников.
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|