Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
46
Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом: 1. f(0,m)=1, если m=0 или m=1; 2. f(0,m)=0, если m≠0 и m≠1; 3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m; Найдите сумму
Задачу решили:
39
всего попыток:
111
Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других. Найти максимальное N.
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
28
всего попыток:
88
Числовая последовательность задаётся уравнениями | xn | = | xn–1 + 1|; x0=0. Найдите min | x1+x2+…+x2014|.
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Задачу решили:
28
всего попыток:
51
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Задачу решили:
33
всего попыток:
51
Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
15
всего попыток:
64
Разрежьте равнобедренную трапецию с основаниями 49 и 29 см, боковой стороной 26 см на три подобные между собой трапеции всевозможными способами. Два разрезания не считать различными, если их линии разрезов симметричны относительно оси симметрии трапеции. Ответом задачи есть сумма длин линий разрезов всех возможных способов разрезания, округленная до целого числа сантиметров.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|