Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
151
всего попыток:
274
Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)
Задачу решили:
94
всего попыток:
453
Сколько существует таких положений часовых стрелок, что замена часовой на минутную и наоборот дает новое положение, тоже возможное на правильных часах?
Задачу решили:
157
всего попыток:
391
От города А до города Б расстояние 35 км. Два велосипедиста выехали из А и из Б одновременно и навстречу друг другу, первый со скоростью 19 км/ч, а второй — 16 км/ч. Перед отправлением на лоб первого велосипедиста, ехавшего из А, села муха, которая взлетела, как только он начал движение, и полетела по направлению к Б со скоростью 40 км/ч. Долетев до второго велосипедиста, ехавшего из Б, она села к нему на лоб, тут же взлетела и полетела к А со скоростью 30 км/ч. (Из А в Б дует ветер.) Долетев до первого велосипедиста, она снова села к нему на лоб, тут же взлетела и полетела к Б, села к нему на лоб... И так далее, пока велосипедисты не столкнулись лбами, раздавив муху. Сколько километров она пролетела?
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Задачу решили:
31
всего попыток:
42
Представить в конечном виде: Cn0·xn−Cn1·(x−1)n+Cn2·(x−2)n−Cn3·(x−3)n+...+(−1)n·Cnn·(x−n)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.
Задачу решили:
83
всего попыток:
223
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.
Задачу решили:
12
всего попыток:
118
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.
Задачу решили:
42
всего попыток:
47
В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|