img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 363
всего попыток: 1106
Задача опубликована: 04.03.09 16:42
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Zlyndin

Найдите наименьшее значение суммы двух различных целых положительных чисел, сумма квадратов которых является кубом некоторого целого числа, а сумма их кубов — квадратом другого целого числа.

+ 27
+ЗАДАЧА 192. Цветная шахматная доска (А.Печковский, И.Итенберг)
  
Задачу решили: 103
всего попыток: 199
Задача опубликована: 24.08.09 11:02
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: casper

Клетки шахматной доски раскрашены не в два цвета, а в несколько. Расстоянием между двумя клетками называется длина кратчайшего пути обычной шахматной ладьи от одной клетки до другой. (Длины сторон клеток равны единице.) Известно, что любые две клетки, находящиеся на расстоянии 6, — разных цветов. В какое наименьшее число цветов могут быть раскрашены клетки такой доски?

Задачу решили: 91
всего попыток: 330
Задача опубликована: 31.10.09 19:07
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Из клетчатой бумаги вырезали квадрат 9×9. Какое наибольшее число клеток в нём можно разрезать по обеим диагоналям так, чтобы квадрат не распался на части?

Задачу решили: 99
всего попыток: 292
Задача опубликована: 10.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Играя в морской бой, Саша стремится расположить все свои корабли внутри прямоугольника наименьшей площади. Сколько клеток составляет площадь такого прямоугольника? (В морской бой играют на поле 10×10, на котором нужно расположить 10 кораблей — один 4×1, два 3×1, три 2×1 и четыре 1×1 — так, чтобы они не соприкасались ни сторонами, ни углами.)

Задачу решили: 78
всего попыток: 335
Задача опубликована: 14.06.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

У скольких целых чисел от 1 до 2010 включительно сумма делителей (включая единицу и само число) нечётна?

Задачу решили: 65
всего попыток: 147
Задача опубликована: 25.06.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: min

Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)

+ 30
  
Задачу решили: 111
всего попыток: 171
Задача опубликована: 22.04.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?

Задачу решили: 46
всего попыток: 97
Задача опубликована: 04.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100

Найти максимальную длину такой последовательности натуральных чисел N(i), что

N(i) <= 2013 для любого i,

N(i) = | N(i-1) - N(i-2) | для i>2

Задачу решили: 48
всего попыток: 56
Задача опубликована: 17.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?

Задачу решили: 53
всего попыток: 65
Задача опубликована: 14.08.15 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Известно, что [x+0,19]+[x+0,20]+...+[x+0,91]=546. Найдите [100x]. ([x] - целая часть числа x.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.