img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 30
  
Задачу решили: 111
всего попыток: 171
Задача опубликована: 22.04.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?

Задачу решили: 34
всего попыток: 173
Задача опубликована: 03.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?

Задачу решили: 67
всего попыток: 108
Задача опубликована: 29.08.12 08:00
Прислал: leonidr321 img
Источник: Вступительная работа в Кировскую ЛМШ
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: rlee

Кенгуру-чемпион может прыгать по прямой вправо и влево и совершать гигантские прыжки. Длина его первого прыжка составляет 1 м, второго — 2 м, третьего — 4 м и так далее (длина каждого прыжка всегда в два раза больше, чем предыдущего). Через какое минимальное количество прыжков кенгуру окажется на расстоянии D = 123456789123456789123456789 м от исходной точки O?

Задачу решили: 57
всего попыток: 92
Задача опубликована: 13.02.13 08:00
Прислал: Shama img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Известно, что для трех различных натуральных чисел их сумма, а также суммы каждых двух являются квадратами целых чисел. Найдите минимальное произведение этих чисел.

Задачу решили: 46
всего попыток: 97
Задача опубликована: 04.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100

Найти максимальную длину такой последовательности натуральных чисел N(i), что

N(i) <= 2013 для любого i,

N(i) = | N(i-1) - N(i-2) | для i>2

Задачу решили: 67
всего попыток: 81
Задача опубликована: 08.11.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите максимальное натуральное n, для которого {√n} = {√(n+100)}. Здесь {x} — дробная часть числа x, то есть разность между числом x и наибольшим не превосходящим его целым числом

Задачу решили: 55
всего попыток: 108
Задача опубликована: 04.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: trial (Трибунал Данилов)

f(1111)=4, f(1234)=3, f(4567)=2, f(1357)=4, f(6518)=4, f(3817)=6, f(8008)=6, f(2014)=?

Задачу решили: 44
всего попыток: 118
Задача опубликована: 27.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Основание правильной пирамиды ABCD является квадратом со стороной 2. Вершина пирамиды E находится на высоте 1 от основания. На стороне CE посредине отмечена точка F.

Муравей ползет из точки A в точку F по кратчайшему пути. Найдите квадрат расстояния пройденного муравьем.

Задачу решили: 48
всего попыток: 56
Задача опубликована: 17.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?

Задачу решили: 59
всего попыток: 89
Задача опубликована: 10.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.