Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
73
всего попыток:
90
Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
Задачу решили:
44
всего попыток:
60
Найдите количество четверок натуральных чисел (a, b, c, n), для которых выполнены два условия:
Задачу решили:
44
всего попыток:
80
Четырёхугольник вписан в окружность , , , . Прямые и пересекаются в точке , . Прямая, проходящая через точку и перпендикулярная пересекает окружность в точке , прямые и пересекаются в точке , и пересекаются в точке . Найдите длину отрезка .
Задачу решили:
69
всего попыток:
71
Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.
Задачу решили:
28
всего попыток:
46
Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом: 1. f(0,m)=1, если m=0 или m=1; 2. f(0,m)=0, если m≠0 и m≠1; 3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m; Найдите сумму
Задачу решили:
39
всего попыток:
111
Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других. Найти максимальное N.
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
28
всего попыток:
88
Числовая последовательность задаётся уравнениями | xn | = | xn–1 + 1|; x0=0. Найдите min | x1+x2+…+x2014|.
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|