Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
213
Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.
Задачу решили:
12
всего попыток:
49
На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)
(Присланная задача изменена администрацией)
Задачу решили:
64
всего попыток:
99
Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x.
Задачу решили:
60
всего попыток:
82
Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.
Задачу решили:
76
всего попыток:
110
В квадрате ABCD |AO| : |BO| : |CO| = 1 : 2 : 3, где О - точка внутри квадрата. Сколько градусов составляет угол AОB.
Задачу решили:
54
всего попыток:
73
В остроугольном треугольнике ABC биссектриса AD равна стороне AC и перпендикулярна отрезку OM, где O - центр описанной окружности, M - точка пересечения высот треугольника ABC. Найдите углы треугольника ABC. В ответе укажите самый большой угол треугольника в градусах.
Задачу решили:
73
всего попыток:
90
Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
Задачу решили:
44
всего попыток:
60
Найдите количество четверок натуральных чисел (a, b, c, n), для которых выполнены два условия:
Задачу решили:
69
всего попыток:
154
Сколькими способами можно расставить 8 королей на доске 2*16 (2 строки, 16 столбцов) так, чтобы они не угрожали друг другу (короли не должны располагаться рядом, в том числе и по диагонали}?
Задачу решили:
44
всего попыток:
80
Четырёхугольник вписан в окружность , , , . Прямые и пересекаются в точке , . Прямая, проходящая через точку и перпендикулярная пересекает окружность в точке , прямые и пересекаются в точке , и пересекаются в точке . Найдите длину отрезка .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|