Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
69
всего попыток:
71
Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.
Задачу решили:
39
всего попыток:
111
Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других. Найти максимальное N.
Задачу решили:
33
всего попыток:
80
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Задачу решили:
25
всего попыток:
83
У трех студентов-математиков на шляпах написаны натуральные числа, студенты не знают что написано на своих шляпах, но видят числа на шляпах других. При этом они знают, что одно число равно сумме двух других. Их задача - определить свои числа. Дальше прошел такой диалог. 1: «Я не знаю свое число». Какое число у первого?
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
15
всего попыток:
64
Разрежьте равнобедренную трапецию с основаниями 49 и 29 см, боковой стороной 26 см на три подобные между собой трапеции всевозможными способами. Два разрезания не считать различными, если их линии разрезов симметричны относительно оси симметрии трапеции. Ответом задачи есть сумма длин линий разрезов всех возможных способов разрезания, округленная до целого числа сантиметров.
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
29
всего попыток:
37
sin(2x)+sin(2y)=1/3, Найдите tg(x)+tg(y).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|