img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 62
Задача опубликована: 02.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

На окружности отмечены 2006 точек. Сначала Петя проводит N хорд с концами в этих точках. Затем Валя красит половину отмеченных точек в один цвет, а остальные – в другой. Петя выигрывает, если найдется хорда с концами разного цвета. При каком наименьшем N Валя не сможет ему помешать?

Задачу решили: 32
всего попыток: 68
Задача опубликована: 23.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Суду в качестве вещественного доказательства предъявлено 100 одинаковых по весу монет, вес каждой больше 10 г (однако суд не знает, что они одинаковы). К сожалению, имеющиеся в суде весы показывают вес любого груза с отклонением ровно в 1 г — иногда в бóльшую, а иногда в меньшую сторону (и, к счастью, суд знает об этом). При каком наибольшем k эксперт может доказать суду, что среди монет есть не менее k одинаковых?

Задачу решили: 38
всего попыток: 58
Задача опубликована: 17.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?

Задачу решили: 18
всего попыток: 122
Задача опубликована: 30.06.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).

Задачу решили: 28
всего попыток: 88
Задача опубликована: 25.09.14 18:32
Прислал: leonid img
Источник: Ленинградские олимпиады
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Числовая последовательность задаётся уравнениями

 | xn | = | xn–1 + 1|;  x0=0.

Найдите min | x1+x2+…+x2014|.

Задачу решили: 32
всего попыток: 67
Задача опубликована: 23.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
[p1/2]+[(p+1)1/2]+...+[q1/2]=2011, где [x] - целая часть числа x.

Задачу решили: 41
всего попыток: 46
Задача опубликована: 16.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: marzelik

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?

+ 1
  
Задачу решили: 28
всего попыток: 51
Задача опубликована: 23.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Задачу решили: 33
всего попыток: 80
Задача опубликована: 05.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?

Задачу решили: 33
всего попыток: 51
Задача опубликована: 17.07.17 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.