img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 91
всего попыток: 221
Задача опубликована: 29.10.10 08:00
Прислала: Marishka24 img
Источник: Московские математические бои
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)

Задачу решили: 78
всего попыток: 161
Задача опубликована: 07.11.10 08:00
Прислал: Busy_Beaver img
Источник: Региональная индийская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найдите минимальное значение наименьшего общего кратного двадцати (не обязательно различных) натуральных чисел с суммой 801?

Задачу решили: 91
всего попыток: 125
Задача опубликована: 09.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!

Задачу решили: 52
всего попыток: 503
Задача опубликована: 11.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?

Задачу решили: 80
всего попыток: 201
Задача опубликована: 14.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных?

+ 17
+ЗАДАЧА 463. Квадрат без квадратов (С.Б.Гашков, А.А.Григорян)
  
Задачу решили: 50
всего попыток: 159
Задача опубликована: 22.11.10 08:00
Прислал: Busy_Beaver img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

В квадрате размером 13×13 клеток отмечены центры k клеток. При этом никакие четыре отмеченные точки не являются вершинами прямоугольника со сторонами, параллельными сторонам квадрата. При каком наибольшем k это возможно?

Задачу решили: 65
всего попыток: 128
Задача опубликована: 26.11.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Прямоугольник ABCD имеет стороны AB=11 и BC=5. Для треугольника EFG точка A — точка пересечения высот, B – центр описанной окружности, C — середина FG, D — основание высоты, проведенной из вершины E. Найдите FG.

Задачу решили: 51
всего попыток: 180
Задача опубликована: 03.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите такое наименьшее n, что не существует арифметической прогрессии из 1999 вещественных чисел, ровно n членов которой — целые.

Задачу решили: 47
всего попыток: 227
Задача опубликована: 05.12.10 08:00
Прислала: KATEHbKA img
Источник: Всеукраинская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Вдоль дороги расставлены светофоры на расстоянии 1 км друг от друга. В течение 1 минуты с начала каждого часа на них загорается красный свет, запрещая проезд, а остальное время горит зеленый свет. Мотоциклист начинает движение с постоянной скоростью у светофора, на котором только что загорелся красный свет и за 10 часов пути ни разу не встретил красного света (ни разу не затормозил). Какое наибольшее расстояние он мог проехать за это время? Ответ округлите до целого числа метров.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.