img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 80
Задача опубликована: 25.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Четырёхугольник ABCD вписан в окружность O, AB = 24, AD = 16, \angle BAC = \angle DAC. Прямые AC и BD пересекаются в точке E, BE = 18. Прямая, проходящая через точку D и перпендикулярная AC пересекает окружность O в точке F(\ne D), прямые FC и AB пересекаются в точке K, AC и DF пересекаются в точке L. Найдите длину отрезка KL.

+ 17
  
Задачу решили: 69
всего попыток: 71
Задача опубликована: 07.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.

Задачу решили: 28
всего попыток: 46
Задача опубликована: 26.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом:

1. f(0,m)=1, если m=0 или m=1;

2. f(0,m)=0, если m≠0 и m≠1;

3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m;

Найдите сумму  \sum\limits_{m=0}^{2551} f(50,m)

Задачу решили: 44
всего попыток: 58
Задача опубликована: 11.02.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Назовем натуральное число тормозом, если в его десятичной записи найдутся две одинаковые цифры рядом. Найдите наибольшее натуральное число, которое нельзя представить как сумму двух тормозов.

Задачу решили: 43
всего попыток: 84
Задача опубликована: 18.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В одной кучке лежит n камней, а в другой – k камней. Каждую минуту автомат выбирает кучку, в которой четное число камней, и половину имеющихся в ней камней перекладывает в другую кучку (если в обеих кучках четное число камней, то автомат выбирает кучку случайным образом). Если в обеих кучках число камней оказалось нечетным, автомат прекращает работу. Сколько существует упорядоченных пар натуральных чисел (n, k), не превосходящих 1000, для которых автомат через конечное время обязательно остановится?

Задачу решили: 32
всего попыток: 71
Задача опубликована: 22.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дана белая клетчатая доска 10?10. Игрок хочет провести в каждой клетке диагональ и закрасить один из получающихся треугольников в черный цвет так, чтобы к любой границе двух клеток примыкали два одноцветных треугольника. Сколькими различным способами игрок может это сделать?

Задачу решили: 34
всего попыток: 103
Задача опубликована: 01.07.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Рассмотрим поочередно всевозможные упорядоченные пары подмножеств данного 2013-элементного множества. Для каждой пары запишем число элементов в пересечении этих подмножеств. Какое число будет написано больше всего раз, когда будут рассмотрены все пары подмножеств?

Задачу решили: 52
всего попыток: 76
Задача опубликована: 03.07.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из бесконечной шахматной доски по границам клеток вырезана связная фигура (ладья может пройти из любой клетки в любую другую, не покидая доску, передвигаясь каждый раз на одну клетку). В вырезанной фигуре оказалось 2013 черных клеток. Каково максимальное возможное количество белых клеток в этой фигуре?

Задачу решили: 50
всего попыток: 63
Задача опубликована: 10.07.13 08:00
Прислал: PashaAC img
Источник: Алфутова Н.Б., Устинов А.В. Алгебра и теория ...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Имеется 2000 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?

Задачу решили: 39
всего попыток: 111
Задача опубликована: 09.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других.

Найти максимальное N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.