Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
301
Вычислите
Задачу решили:
74
всего попыток:
262
Сколько положительных действительных решений имеет каждое из следующих уравнений: Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:
Задачу решили:
36
всего попыток:
56
Найдите вероятность того, что n случайно и независимо выбранных на окружности точек лежат на одной полуокружности.
Задачу решили:
45
всего попыток:
143
Вася написал программу, описывающую подбрасывание нечестной монетки. Первый раз всегда выпадает орёл, второй раз — решка. Начиная с третьего броска вероятность выпадения орла равна отношению числа выпавших до этого орлов к числу произведённых до этого бросков. Например, вероятность выпадения орла при третьем броске равна 1/2, ибо до этого выпали ровно один орёл и ровно одна решка. С какой вероятностью при первых 300 бросках 200 раз выпадет орёл и 100 раз — решка? (Ответ введите в виде несократимой дроби p/q, где p и q — натуральные числа.)
Задачу решили:
39
всего попыток:
114
Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.
Задачу решили:
48
всего попыток:
152
У Васи есть 40 карандашей, все разной длины. Он хочет их разложить на столе в два ряда по 20 так, чтобы в каждом ряду их длины были упорядочены по возрастанию, а еще в каждой из 20 пар (карандаши, лежащие друг под другом) верхний карандаш был бы длиннее нижнего. Сколькими способами он может это сделать?
Задачу решили:
46
всего попыток:
100
Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?
Задачу решили:
58
всего попыток:
133
Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?
Задачу решили:
34
всего попыток:
38
Пусть p(n) — вероятность того, что ни одно из n писем, случайным образом запечатанных в приготовленные для них n конвертов, не дойдёт до своего адресата. Найти предел p(n)при n→∞.
Задачу решили:
28
всего попыток:
40
Если бросить пару обычных костей (кубиков, грани которых пронумерованы точками от 1 до 6), то имется один вариант, когда выпадает в сумме 2, два варианта, когда выпадает в сумме 3 и т.д. Необычные шестигранные кости - это такие кости, у которых:
Значения количества точек для каждой кости представьте в виде неубывающей последовательности чисел, например {1,2,2,3,3,4}, и далее в виде шестизначного числа, 122334. Найдите все необычные кости и в качестве ответа дайте сумму найденных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|