img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 42
Задача опубликована: 26.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: min

Представить в конечном виде: Cn0·xnCn1·(x−1)n+Cn2·(x−2)nCn3·(x−3)n+...+(−1)n·Cnn·(xn)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.

Задачу решили: 56
всего попыток: 159
Задача опубликована: 19.03.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство

ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}.

Какое наибольшее число различных значений может принимать функция ƒ?

Задачу решили: 46
всего попыток: 100
Задача опубликована: 19.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: perfect_result... (Александр Опарин)

Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?

Задачу решили: 58
всего попыток: 133
Задача опубликована: 17.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?

Задачу решили: 74
всего попыток: 96
Задача опубликована: 04.09.13 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти максимальное значение параметра a, при котором верно неравенство: ax2-2x > 3a-1 для всех x <0.

Задачу решили: 77
всего попыток: 80
Задача опубликована: 09.09.13 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.

Задачу решили: 15
всего попыток: 181
Задача опубликована: 02.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что  для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.

Задачу решили: 27
всего попыток: 53
Задача опубликована: 03.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.