Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
80
всего попыток:
123
В соревновании, состоящем из N состязаний, участвовали Андрей, Боря и Вася. За первое место в каждом состязании присуждалось x, за второе – y, за третье – z очков, где x>y>z>0 и все они целые. В итоге Андрей набрал 22, а Боря и Вася – по 9 очков. Боря победил в забеге на 100 метров. Найдите N и определите, кто был вторым в прыжках в высоту. В ответе введите без пробела сначала N, а затем номер участника по алфавиту: 1 (Андрей), 2 (Боря) или 3 (Вася).
Задачу решили:
111
всего попыток:
171
Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?
Задачу решили:
94
всего попыток:
152
Укажите максимальное значение выражения , если и для любого .
Задачу решили:
76
всего попыток:
185
Сколько целых положительных решений имеет уравнение:
Задачу решили:
91
всего попыток:
139
Внутри прямоугольника со сторонами 20 и 30 отмечена точка . Найдите минимальное значение выражения .
Задачу решили:
34
всего попыток:
63
На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?
Задачу решили:
118
всего попыток:
127
В равенстве СТУПЕНЬКА=ТТППЬ×ТТППЬ каждая буква означает цифру, разные буквы — разные цифры. Нулей нет. Чему равна СТУПЕНЬКА?
Задачу решили:
50
всего попыток:
154
Внутри прямоугольного треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и CA на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 30, 26 и 20. Найдите сумму всех возможных значений периметра треугольника ABC.
Задачу решили:
41
всего попыток:
213
Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.
Задачу решили:
51
всего попыток:
762
Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|