Лента событий:
Vkorsukov решил задачу "Параллелограмм и две биссектрисы - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
143
Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).
Задачу решили:
61
всего попыток:
254
Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.
Задачу решили:
51
всего попыток:
346
В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.
Задачу решили:
101
всего попыток:
124
Найдите чётное 16-значное число, квадрат которого оканчивается на само это число. (Пример такого нечётного трёхзначного числа: 6252=390625.)
(Присланная задача была усложнена администрацией...)
Задачу решили:
71
всего попыток:
209
В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?
Задачу решили:
78
всего попыток:
335
У скольких целых чисел от 1 до 2010 включительно сумма делителей (включая единицу и само число) нечётна?
Задачу решили:
81
всего попыток:
131
Найдите наименьшее натуральное число, не делящееся на 11, и такое, что при замене любой его (но только одной) цифры на любую цифру, отличающуюся от выбранной на 1, получается число, делящееся на 11. (Например, число 10 этому условию не удовлетворяет: 11 делится на 11, 00=0 тоже, а вот 20 — нет!)
(Физико-мамематический лицей №239)
Задачу решили:
65
всего попыток:
147
Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)
Задачу решили:
99
всего попыток:
123
Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?
Задачу решили:
100
всего попыток:
168
Отрезок шоссе между пунктами А1 и А11 имеет протяженность, равную 56 километрам. Вдоль этого шоссе расположены ещё 9 пунктов: А2, А3, ..., А10 (именно в таком порядке). Любые два соседних участка шоссе (вместе взятых) не длиннее 12 километров. А любые три — не короче 17. Сколько километров составляет расстояние от А2 до А7?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|