img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 198
всего попыток: 755
Задача опубликована: 28.06.09 21:06
Прислал: Rep img
Источник: Международная математическая олимпиада школьн...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?

Задачу решили: 51
всего попыток: 250
Задача опубликована: 10.09.09 00:05
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Гусеница сидит внутри закрытой коробки высотой 24 см посередине её вертикального ребра. Посередине самого дальнего от гусеницы вертикального ребра в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу. Известно, что к отверстию ведут n различных кратчайших путей равной длины. При каких длине и ширине коробки значение максимально и чему оно равно? В ответе укажите сумму длин в см всех n кратчайших путей гусеницы до отверстия при наибольшем значении n.

Задачу решили: 82
всего попыток: 99
Задача опубликована: 16.09.09 08:29
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник.

Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.

Задачу решили: 63
всего попыток: 178
Задача опубликована: 21.09.09 12:09
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите число всех пар (m,nцелых чисел таких, что 1 ≤ m ≤ 20092009, 1 ≤ n ≤ 20092009 и |m2 + mn − n2| = 1.

Задачу решили: 82
всего попыток: 234
Задача опубликована: 25.09.09 14:36
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?

Задачу решили: 73
всего попыток: 215
Задача опубликована: 30.09.09 08:25
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.

+ 4
+ЗАДАЧА 235. 10 из 2009 (Г.А.Гальперин)
  
Задачу решили: 55
всего попыток: 74
Задача опубликована: 06.10.09 14:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?

Задачу решили: 24
всего попыток: 35
Задача опубликована: 12.10.09 13:41
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)

Задачу решили: 145
всего попыток: 199
Задача опубликована: 09.12.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.

Задачу решили: 35
всего попыток: 46
Задача опубликована: 24.12.09 23:56
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и yнечётные целые числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.