Лента событий:
DOMASH добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
11
всего попыток:
72
В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе?
Задачу решили:
35
всего попыток:
82
На окружности выбраны точки , , , для которых
Задачу решили:
29
всего попыток:
35
Вне окружности с центром O выбрана точка P. Из точек пересечения прямой PO и окружности , дальнюю от P точку обозначим за A, AP = 200. Через точку P проведена прямая l (не проходящая через O), пересекающая в точках B и C, ближней и дальней от P соответственно. Описанная окружность треугольника ABO пересекается с l в точке , а описанная окружность треугольника ACO пересекается с l в точке , причем E лежит между точками B и C, AD = 250, AE = 90. Найдите радиус окружности .
Задачу решили:
40
всего попыток:
81
Вершины графа G можно единственным образом разбить на 5 групп так, что никакие две вершины из одной группы не смежны. Количество вершин в графе - 2012. Найдите минимальное число ребер в этом графе.
Задачу решили:
36
всего попыток:
60
Дана вписанная n-угольная пирамида SA1A2…An. Сфера ? касается всех её боковых ребер SAi, а также касается плоскости основания в точке K. При каком минимальном n точка K обязательно является центром окружности, описанной около основания?
Задачу решили:
45
всего попыток:
65
Пусть а1, а2, …, а100 – натуральные числа. Для каждой пары чисел аi, аj при i < j выписываются числа аi+аj, аiаj и |аi–аj|. Найдите наибольшее возможное значение количества нечётных чисел среди выписанных.
Задачу решили:
37
всего попыток:
41
Дана окружность и прямая линия, которая проходит через ее центр. На окружности отмечена точка, не лежащая на прямой. При помощи одной линейки без делений постройте перпендикуляр от точки к прямой.
Задачу решили:
38
всего попыток:
65
В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов?
Задачу решили:
13
всего попыток:
16
Два неперекрывающихся квадрата со сторонами a и b (a≠b) имеют общую вершину O. У каждого из них по две вершины лежат на окружности, а через A и B обозначены оставшиеся две вершины (см. рисунок). Найдите величину угла AOB в градусах, если он острый.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|