Лента событий:
DOMASH добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
378
всего попыток:
846
На вечеринке собрались 5 супружеских пар. Встречаясь, некоторые участники вечеринки обменивались рукопожатиями, некоторые нет. (Супруги, разумеется, друг другу руки не пожимали.) Один из участников вечеринки, мистер Смит, опросил всех остальных, сколько рукопожатий сделал каждый из них. Все названные числа оказались разными. Сколько рукопожатий сделал сам мистер Смит?
(Предлагалась на "Первом математическом")
Задачу решили:
89
всего попыток:
652
На билете лотереи имеется 60 пустых клеток. Участник лотереи записывает в каждую клетку билета по одному числу от 1 до 60 без повторений. (Билет, заполненный с повторениями, считается недействительным.) Организаторы лотереи по тем же правилам заполняют свой билет–эталон. Выигрывают те билеты, у которых хотя бы в одной клетке записано то же число, что и в той же клетке билета–эталона. Какое наименьшее число билетов должен заполнить участник лотереи, чтобы обеспечить себе выигрыш независимо от того, как будет заполнен билет–эталон?
Задачу решили:
64
всего попыток:
376
На фестивале камерной музыки собрались 30 музыкантов. На каждом концерте некоторые из них выступают, а остальные слушают их из зала. Какое наименьшее число концертов нужно организовать, чтобы каждый музыкант смог послушать из зала всех остальных?
Задачу решили:
25
всего попыток:
257
В стране Фильмландии в рамках создания нового фильма все актёры заняты заполнением специальной анкеты. Каждый указывает 14 лучших, по его мнению, актёров. Актёрский состав считается приемлемым для актёра, если в нем есть кто-нибудь из его списка лучших. Известно, что для любой группы из шести актёров можно подобрать приемлемый состав из двух. На фильм нужно собрать актёрский состав из n человек, приемлемый для всех актеров. При каком максимальном n это может оказаться невыполнимым?
Задачу решили:
11
всего попыток:
72
В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе?
Задачу решили:
40
всего попыток:
81
Вершины графа G можно единственным образом разбить на 5 групп так, что никакие две вершины из одной группы не смежны. Количество вершин в графе - 2012. Найдите минимальное число ребер в этом графе.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|