Лента событий:
solomon
решил задачу
"Дырявый квадрат-4"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
188
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
19
всего попыток:
473
Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями?
Задачу решили:
139
всего попыток:
540
А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили:
40
всего попыток:
236
Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.
Задачу решили:
45
всего попыток:
326
Вдоль коридора тюрьмы 13 камер, вначале пустых. Раз в день можно сделать такую операцию: либо посадить двоих в самую левую камеру, либо переселить двоих из одной камеры в две соседних (если камера крайняя, то одного выпускают совсем). За какое наименьшее число дней удастся посадить кого-нибудь в самую правую камеру?
Задачу решили:
23
всего попыток:
64
Двум математикам сообщили по натуральному числу. Они знают, что эти числа отличаются на единицу и меньше 2013. Математики по очереди могут задавать друг другу вопрос: «Знаешь ли ты мое число?» Какое минимальное количество вопросов гарантирует, что рано или поздно кто-то из них ответит «да»? Математики, разумеется, гениальны и всегда говорят правду.
Задачу решили:
56
всего попыток:
150
Известно, что a2+4b2=4 и cd=4. Чему равен минимум выражения (a-d)2+(b-c)2? Ответ укажите с точностью до 2-х знаков после запятой.
Задачу решили:
18
всего попыток:
38
18 монет пронумерованы с 1 до 18. Первому игроку известно, что монеты с номерами 1,2,...,9 настоящие, а монеты с номерами 10,11,..,18 - фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,9 - настоящие, а 10,11,..,18 - фальшивые?
Задачу решили:
33
всего попыток:
36
В треугольник ABC со сторонанми |AB|=5, |BC|=7, |AC|=8 вписана полуокружность с центром на стороне AC, которая касается сторон AB и BC. Найдите квадрат радиуса полуокружности
Задачу решили:
20
всего попыток:
44
Пусть a1, a2, ..., a2019 неотрицательные действительные числа, сумма которых равна 1. Найдите максимальное значение суммы всех произведений aiaj для всех различных i и j, таких что i|j (i - делитель j).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|