img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 577
всего попыток: 658
Задача опубликована: 09.07.09 10:25
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vitsel (Виталий Леонтьев)

По аллее длиной 240 м навстречу друг другу идут двое детей. Скорость мальчика 1,5 м/с, а его младшей сестрёнки — 1 м/с. Между ними от одного к другому, не останавливаясь и заливаясь радостным лаем, бегает их собака со скоростью 5 м/с. Сколько метров пробежит собака прежде, чем дети встретятся?

Задачу решили: 159
всего попыток: 602
Задача опубликована: 23.05.09 21:01
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: levvol

У Вас есть два одинаковых стеклянных шарика. Вы бросаете их — можно по одному — с разных этажей 36-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить оба шарика. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.

Задачу решили: 144
всего попыток: 195
Задача опубликована: 17.09.09 09:00
Прислал: demiurgos img
Источник: А.К.Толпыго "Девяносто шесть"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти среднее арифметическое всех натуральных чисел, десятичная запись которых состоит из 4-х четвёрок, 6-ти шестёрок и 9-ти девяток, записанных в любом порядке. (Например, 4699644466669999999.)

Задачу решили: 149
всего попыток: 271
Задача опубликована: 27.05.09 20:42
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Каждая сторона правильного треугольника делится на 9 равных отрезков, через концы которых проводятся всевозможные прямые, параллельные сторонам. В результате чего большой треугольник разбивается на 81 маленький, любые два из которых, имеющие общую сторону, называются соседними. Какое максимальное количество маленьких треугольников можно обойти, если разрешается двигаться от треугольника к любому соседнему, но нельзя проходить по одному и тому же треугольнику дважды?

Задачу решили: 209
всего попыток: 496
Задача опубликована: 24.05.09 11:41
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В пустой комнате, имеющей форму многоугольника, горит одна лампочка, но ни одна стена не освещена полностью. Каково минимально возможное число стен в комнате?

Задачу решили: 170
всего попыток: 568
Задача опубликована: 07.06.09 18:39
Прислал: demiurgos img
Источник: Г.Дьюдени "520 головоломок"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Tolik (Анатолий Плюхин)

Двенадцать солдат должны как можно быстрее вернуться в свою часть, находящуюся от них в 17 км по просёлочной дороге. Друг одного из солдат берётся подвезти их на своём джипе, но одновременно он может взять лишь четверых. Скорость идущих пешком солдат — 5 км/ч, а джипа — 60 км/ч (дорога, увы, неважная). Через сколько минут все солдаты смогут вернуться в часть при наилучшей организации своего движения? Временем, затраченным на пересадки, можно пренебречь.

Задачу решили: 370
всего попыток: 889
Задача опубликована: 13.06.09 11:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: ElisVP

Перед двумя игроками кучка из 111 спичек. Каждый из них своим ходом берёт из неё от 1 до 11 спичек — любое число на своё усмотрение. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока?

Задачу решили: 160
всего попыток: 618
Задача опубликована: 17.06.09 00:30
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: an_na

Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?

Задачу решили: 271
всего попыток: 611
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Проволочный каркас куба с ребром длиной 10 см вымазан мёдом. Сидящая в вершине муха хочет проползти по всем сладким рёбрам, чтобы съесть весь мёд. Какое минимальное количество сантиметров её придётся для этого преодолеть?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.