Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
34
Квадрат 8×8 без двух угловых клеток требуется разрезать на минимальное количество частей, из которых можно собирать квадраты с двумя отсутствующими клетками во всех возможных местах, при этом части разрешается поворачивать и переворачивать. В ответе укажите количество частей, а в решении - их расположение на приведённой фигуре.
Задачу решили:
21
всего попыток:
21
Сложите из 100 экземпляров фигурок в 10 раз большую фигуру Фигурки можно поворачивать и переворачивать.
Задачу решили:
7
всего попыток:
53
Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?
Задачу решили:
24
всего попыток:
49
Шахматную доску 8×8 разрезали на n прямоугольников так, что в каждом прямоугольнике одинаковое число белых и черных клеток, и при этом, если ai - число клеток в i-м прямоугольнике, то a1 < a2 < ... < an. Найдите наибольшее число n, при котором возможно такое разбиение. В ответе укажите количество возможных различных разбиений a1, a2, ..., an при полученном n.
Задачу решили:
10
всего попыток:
14
Рассмотрим следующие 6 свободных полиомино: Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких. Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом: Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.
Задачу решили:
16
всего попыток:
16
Как разрезать правильный пятиугольник на 4 треугольника так, чтобы из них можно было составить равнобедренную трапецию?
Задачу решили:
15
всего попыток:
15
Дан плоский треугольный торт, сверху намазанный кремом. Углы треугольника - 130, 30 и 20 градусов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно вместе уложить в эту коробку кремом вверх?
Задачу решили:
11
всего попыток:
33
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких ломаных?
Задачу решили:
16
всего попыток:
89
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких попарно неконгруэнтных ломаных?
Задачу решили:
13
всего попыток:
15
На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|