Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
88
всего попыток:
115
Эта шахматная позиция возникла из начальной после четвёртого хода чёрных. Как именно? В ответе необходимо указать все ходы белых и чёрных фигур.
Задачу решили:
178
всего попыток:
215
На шахматной доске стоят 13 ладей так, что каждое незанятое поле находится под ударом хотя бы одной из них. Какое максимальное количество ладей можно снять с доски, чтобы все незанятые поля находились под ударом?
Задачу решили:
55
всего попыток:
83
В левом нижнем углу клетчатой доски n x n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов за которое он может дойти до правого нижнего угла. Найдите n.
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
20
всего попыток:
89
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
23
всего попыток:
86
Существует замкнутый путь коня длины N на прямоугольной клетчатой доске 4x20. Найдите максимально возможное N. Ходить на одну и ту же клетку больше одного раза нельзя.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|