img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 177
всего попыток: 323
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?

Задачу решили: 180
всего попыток: 231
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, 9-11"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.

Задачу решили: 75
всего попыток: 682
Задача опубликована: 10.08.09 15:49
Прислал: demiurgos img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?

Задачу решили: 104
всего попыток: 182
Задача опубликована: 11.08.09 17:41
Прислала: Hasmik33 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В треугольнике ABC с площадью 420 от вершин к противоположным сторонам проведены отрезки AK, BL, CM так, что их концы делят стороны в отношении 2:1 (BK=2·KC, CL=2·LAAM=2·MB). Найдите площадь треугольника, ограниченного этими отрезками.

Задачу решили: 226
всего попыток: 562
Задача опубликована: 21.08.09 16:29
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

– А у тебя дети есть?

– Три дочери.

– Сколько им лет?

– Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже.

– Этой информации мне недостаточно...

– А если сложить, то получится сегодняшнее число.

Поразмыслив:

– И этой информации мне недостаточно...

– Средняя похожа на меня.

– Вот теперь я знаю ответ на свой вопрос.

Сколько лет средней дочери?

Задачу решили: 87
всего попыток: 212
Задача опубликована: 01.09.09 15:22
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.

(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили: 194
всего попыток: 259
Задача опубликована: 05.09.09 09:56
Прислала: uchilka725 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

У каждого из чисел от 1 до миллиарда подсчитывается сумма его цифр. Затем у каждого числа из получившегося миллиарда чисел снова подсчитывается сумма его цифр и т. д., пока не получится миллиард однозначных чисел (цифр). Каких чисел получится больше других?

Задачу решили: 94
всего попыток: 199
Задача опубликована: 13.09.09 11:18
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?

Задачу решили: 82
всего попыток: 99
Задача опубликована: 16.09.09 08:29
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник.

Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.

Задачу решили: 111
всего попыток: 499
Задача опубликована: 24.09.09 11:33
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.) 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.