Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
101
Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1, x2, x3 ,…. X200 принимают значения 0 или 1. Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.
Задачу решили:
43
всего попыток:
112
Подмножество S действительных чисел строится следующим образом:
Задачу решили:
43
всего попыток:
281
Пусть . Найдите такое натуральное , что уравнение имеет ровно 4 различных действительных решения.
Задачу решили:
65
всего попыток:
105
Для натуральных чисел a, b, c справедливо равенство
Найдите значение a + b + c.
Задачу решили:
46
всего попыток:
61
Последовательность целых чисел такова, что , , и для некоторого натурального k выполняется Также известно, что последовательность обладает следующим свойством Найдите значение .
Задачу решили:
87
всего попыток:
132
Найти минимальное значение выражения: x8+y8-3x2y2, х и у - действительные числа.
Задачу решили:
69
всего попыток:
88
Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.
Задачу решили:
101
всего попыток:
116
Найдите максимально возможное значение выражения x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа.
Задачу решили:
67
всего попыток:
101
Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.
Задачу решили:
28
всего попыток:
46
Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом: 1. f(0,m)=1, если m=0 или m=1; 2. f(0,m)=0, если m≠0 и m≠1; 3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m; Найдите сумму
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|