img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 58
всего попыток: 208
Задача опубликована: 13.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Нить согнули в три раза, потом снова в три раза, после чего сделали не по сгибам разрез. Два из полученных кусков имеют длину 2 см и 6 см. Какой максимальной могла быть длина нити в сантиметрах.

Задачу решили: 75
всего попыток: 100
Задача опубликована: 16.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В прямоугольном треугольнике ABC угол C = 90°, угол B = 40°. На сторонах AB и BC выбраны такие точки D и E соответственно, что EAD = 5° и ECD = 10°. Найдите угол EDC в градусах.

Задачу решили: 73
всего попыток: 100
Задача опубликована: 27.12.13 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В треугольнике ABC провели биссектрису СD. Прямая, параллельная CD и проходящая и через точку B, пересекает продолжение AC в точке E. Известно, что |AD| = 4, |BD| = 6, |BE| = 15. Найдите |BC|2.

Задачу решили: 44
всего попыток: 170
Задача опубликована: 30.12.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует таких целых чисел 0<n<90, что tg(n°) можно выразить с помощью конечного количества квадратных корней (например n=30, 45, 60)?

Задачу решили: 46
всего попыток: 60
Задача опубликована: 03.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Круг разбили ста хордами так, что никакие три хорды не пересекаются в одной точке, при этом при этом всего было сто точек пересечений хорд.

На какое наибольшее число областей разобьется круг?

Задачу решили: 11
всего попыток: 426
Задача опубликована: 10.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколько существует различных вписанных четырёхугольников ABCD, для которых AB=DA+BC=1, а величины углов DAB и ABC в градусах целочисленные?

Задачу решили: 30
всего попыток: 44
Задача опубликована: 28.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В остроугольном треугольнике ABC высоты BD и CE пересекаются в точке H, точка M --- середина AH. Через точки A и H провели окружность, центр O которой лежит вне треугольника ABC. Окружность пересекается с прямой AC$ в точке P. Известно, что углы MED и APO равны, |AB| = 200, |AD| = 40, |AP| = 96√6. Найдите длину отрезка OP.

Задачу решили: 55
всего попыток: 75
Задача опубликована: 10.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точки M и N делят сторону BC треугольника ABC на три равные части (|BM| = |MN| = |NC|). Точка F — середина отрезка AN. Прямая, проходящая через F и параллельная AC, пересекает AB в точке D, а AM — в точке E. Найдите отношение |EF|/|ED|.

Задачу решили: 46
всего попыток: 77
Задача опубликована: 19.03.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан треугольник ABC.

Радиус окружности, касающей стороны AB и продолжений сторон AC и BC равен 78.

Радиус окружности, касающей стороны AC и продолжений сторон AB и BC равен 91.

Радиус окружности, касающей стороны BC и продолжений сторон AB и AC равен 102.

Чему равна площадь треугольника ABC?

Задачу решили: 24
всего попыток: 61
Задача опубликована: 02.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Внутри выпуклого 5-угольника A1A2A3A4A5 расположена точка O, причем равны следующие углы:
A1A2O = OA3A4, A2A3O = OA4A5, A3A4O = OA5A1, A4A5O = OA1A2, A5A1O = OA2A3.
Из точки O на стороны A1A2, A2A3, A3A4, A4A5, A5A1
опущены высоты с основаниями B1, B2, B3, B4, B5 соответственно,
|B1B2| = 8, |B2B3| + |B3B4| + |B4B5| + |B5B1| = 30.
Найдите площадь 5-угольника B1B2B3B4B5, если площадь треугольника OB1B2 равна 20.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.