img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MMM добавил комментарий к задаче "Хитрая змейка Рубика" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 23
Задача опубликована: 29.11.23 08:00
Прислал: admin img
Источник: Турнир имени А.П.Савина, 2021
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: old

Для какого наибольшего натурального числа N в десятичной записи каждого из чисел N, 2N, 3N, …, N² последняя цифра не равна предпоследней?

Задачу решили: 22
всего попыток: 23
Задача опубликована: 11.12.23 08:00
Прислал: admin img
Источник: Олимпиада Эстонии, 2016
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?

Задачу решили: 21
всего попыток: 34
Задача опубликована: 13.12.23 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Пусть R - луч, с вершиной в точке P(0; 10) и проходящий через точку (13; 13). M - это множество точек с натуральными координатами, не превосходящими 106. Луч R начинает вращаться вокруг своей вершины P против часовой стрелки. Какая точка из M первой встретится ему на пути? В качестве ответа введите сумму координат этой точки.

Задачу решили: 8
всего попыток: 53
Задача опубликована: 15.03.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта

Три пентамино

считается только один раз.

+ 0
+ЗАДАЧА 2626. 4598722 = 2024 (Ибн Альберт)
  
Задачу решили: 5
всего попыток: 15
Задача опубликована: 18.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным.

Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения.

Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты.

 [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
 4598-72+2 и 4598-(72-2)
 459+87*22 и 459+(-87)*(-22)
не считаются "существенно различными".]

Задачу решили: 12
всего попыток: 39
Задача опубликована: 22.04.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Какую центрально-симметричную фигуру можно сложить из трёх произвольных различных пентамино наибольшим количеством способов?

Введите в ответе это количество.

Задачу решили: 21
всего попыток: 23
Задача опубликована: 10.05.24 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: old

В стозначном числе 12345678901234567890…1234567890 вычеркнули все цифры на четных местах. В полученном пятидесятизначном числе снова вычеркнули все цифры на четных местах. Такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра а.

А если в том же стозначном числе вычеркнули все цифры на нечетных местах, и в полученном пятидесятизначном числе снова вычеркнули все цифры также на нечетных местах, и такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра b.

В ответ введите двузначное число 10а + b.

Задачу решили: 9
всего попыток: 40
Задача опубликована: 13.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.

Задачу решили: 8
всего попыток: 66
Задача опубликована: 20.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура

Три пентамино

считается два раза.

Задачу решили: 7
всего попыток: 18
Задача опубликована: 21.06.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2657
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?

Перекрасить собаку

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.