Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
126
всего попыток:
268
Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?
Задачу решили:
86
всего попыток:
143
Два самолёта летят прямолинейными курсами с постоянными скоростями. В 12-00 расстояние между ними составляло 200 км, в 12-07 — 150 км, а в 12-21 — 130 км. Сколько км составляло наименьшее расстояние между самолётами?
Задачу решили:
63
всего попыток:
390
Дорожки парка идут вдоль краев двух квадратных газонов с одной общей стороной. Вокруг газонов (каждый вокруг своего) против часовой стрелки гуляют с постоянными скоростями Ватсон и на 20% быстрее него Холмс. Время от времени они встречаются на общей дорожке. Во второй раз они встретились через 10 минут после первого, а в третий — через 10 минут после второго. Через сколько минут они встретятся в 4-й раз?
Задачу решили:
105
всего попыток:
119
В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
122
всего попыток:
240
Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?
Задачу решили:
84
всего попыток:
133
Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|