img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Три числа и степени" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 78
всего попыток: 189
Задача опубликована: 05.11.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.

Задачу решили: 78
всего попыток: 161
Задача опубликована: 07.11.10 08:00
Прислал: Busy_Beaver img
Источник: Региональная индийская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найдите минимальное значение наименьшего общего кратного двадцати (не обязательно различных) натуральных чисел с суммой 801?

Задачу решили: 91
всего попыток: 125
Задача опубликована: 09.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!

Задачу решили: 52
всего попыток: 503
Задача опубликована: 11.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?

Задачу решили: 95
всего попыток: 157
Задача опубликована: 12.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Представим сумму

как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?

Задачу решили: 199
всего попыток: 325
Задача опубликована: 16.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Маша и Саша лакомятся изюмом. Маша съедает одну изюминку, Саша — 2, Маша — 3, Саша — 4 и т.д. (Следующий берёт на одну изюминку больше.) Сколько всего было изюминок, если Маша съела ровно 200?

Задачу решили: 40
всего попыток: 236
Задача опубликована: 19.11.10 12:00
Прислал: bbny img
Источник: "Квант"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Father

Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.

 

Задачу решили: 90
всего попыток: 286
Задача опубликована: 24.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Двузначное число записали три раза подряд. Получилось шестизначное число. Какое наибольшее количество натуральных делителей (включая единицу и само число) может иметь это шестизначное число?

Задачу решили: 113
всего попыток: 135
Задача опубликована: 24.11.10 12:00
Прислала: Marishka24 img
Источник: Литовская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.

Задачу решили: 63
всего попыток: 184
Задача опубликована: 26.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.