img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 41
Задача опубликована: 25.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.

Задачу решили: 28
всего попыток: 32
Задача опубликована: 27.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Какое наименьшее количество кругов радиуса 1 нужно, чтобы покрыть круг радиуса 2?

Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 35
всего попыток: 36
Задача опубликована: 14.04.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

Дана равнобедренная трапеция АВСD с основаниями 6 и 24 и высотой 20. Найдите величину наименьшей суммы расстояний: |PA|+|PB|+|PC|+|PD|, где Р – точка внутри трапеции (или на границе).

Задачу решили: 27
всего попыток: 52
Задача опубликована: 17.04.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Решите неравенство:  А(х) / В(х) <= 0, где числитель
A(x) = (|x – 1| – |x – 3|)2*(|x + 2| – |x + 1|)*(|x + 2| – |x + 3|),
а знаменатель B(x) = (|x – 4| – |x + 1|)*(|x + 4| – |x – 2|).

В качестве ответа укажите значение выражения |m1| + |m2| + …, где m1, m2, …– середины ненулевой длины конечных промежутков решения неравенства.

Задачу решили: 34
всего попыток: 44
Задача опубликована: 18.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти количество натуральных чисел в диапазоне от 3 до 2020 , которые не могут быть представлены в виде суммы последовательных натуральных чисел.

Задачу решили: 34
всего попыток: 57
Задача опубликована: 24.04.20 08:00
Прислал: admin img
Источник: Московская Математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 200
Лучшее решение: MMM (MMM MMM)

Натуральные числа m и n взаимно просты. Найдите наибольший общий делитель чисел m+2000n и n+2000m?

+ 3
+ЗАДАЧА 2000. Задача 2000+1 (Альфред Реньи, Станислав Улам)
  
Задачу решили: 18
всего попыток: 37
Задача опубликована: 25.04.20 08:00
Прислала: knop img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Алик загадал число от 1 до 2000. Стас может задавать ему вопросы, на которые Алик отвечает "да" илм "нет", но один раз может соврать, но может и не врать. Какое наименьшее число вопросов заведомо достаточно Стасу для угадывания? 

Задачу решили: 43
всего попыток: 52
Задача опубликована: 27.04.20 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Одна из вершин треугольника имеет координаты (7, 1), другая вершина лежит на оси X, третья – на линии графика функции y=x. Определите минимально возможное значение периметра этого треугольника.

Задачу решили: 42
всего попыток: 53
Задача опубликована: 01.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Трехзначное число делится на 11 без остатка. При этом частное равно сумме квадратов цифр делимого. Найдите сумму всех таких трехзначных чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.