img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 45
Задача опубликована: 12.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел.

Числовая пирамида из натурального ряда

Найдите сумму чисел в 123-ой строке этой числовой пирамиды.

Задачу решили: 22
всего попыток: 41
Задача опубликована: 14.08.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Длина стороны равностороннего треугольника равна d. Внутри треугольника есть точка, расстояния от которой до вершин треугольника равны a, b, c.

Найдите полином 4-й степени от 4-х переменных a, b, c, d, для которого выполняется: P(a,b,c,d)=0 для любого равностороннего треугольника и любой точки внутри него.

В качестве ответа введите сумму абсолютных величин всех его коэффициентов, если коэффициент при d4 равен 1.

Задачу решили: 28
всего попыток: 36
Задача опубликована: 17.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mosk_

Для угла x и чисел a, b, c и cos x верно соотношение acos2x+bcosx+c=0. Составьте квадратичное соотношение с числами a, b и c для cos 2x. В качестве ответа введите сумму коэффициентов таких, что наибольший общий делитель их был равен 1 для a = 12, b = 8, с = -3..

Задачу решили: 27
всего попыток: 56
Задача опубликована: 19.08.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Около трапеции ABCD c основаниями |АВ|=3*|CD| описана окружность диаметром АВ. В точках А и С проведены касательные, которые пересекаются в точке К. Найти значение |KD|2, если известно, что оно равно численно 2*|АВ|.

Задачу решили: 26
всего попыток: 45
Задача опубликована: 26.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой  у=2020-х2 и осью Ох?

Задачу решили: 29
всего попыток: 43
Задача опубликована: 28.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.

Задачу решили: 28
всего попыток: 47
Задача опубликована: 31.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.

Задачу решили: 5
всего попыток: 14
Задача опубликована: 02.09.20 08:00
Прислал: TALMON img
Вес: 3
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Если на лист "тетрадки в клеточку" положить квадрат со стороной 6, то он захватит какую-то фигуру из нескольких целых клеток (например, как показано на рисунке).

Квадрат на тетрадке в клеточку

Сколько может быть таких неконгруэнтных фигур?

Считаются только максимальные фигуры: если к фигуре можно добавить хотя бы одну целую клетку (быть может), используя поворот и/или сдвиг квадрата по листу, то такая фигура не максимальная. Фигура на рисунке, очевидно, не максимальная. Такие не считаем.

В «подробном» решении следует показать все фигуры, либо как-то ясно их описать (например, используя шахматную терминологию).

Задачу решили: 32
всего попыток: 35
Задача опубликована: 07.09.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите многочлен наименьшей степени с целыми коэффициентами и коэффициенте 1 при старшей степени, корнем которого явлется число 21/2+31/2. В качестве ответа введите сумму его коэффициентов.

Задачу решили: 17
всего попыток: 75
Задача опубликована: 11.09.20 08:00
Прислал: DOMASH img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В правильном целочисленном треугольнике АВС есть такая точка внутри, что целочисленные расстояния a, b, c до его вершин образуют арифметическую прогрессию и НОД(a,b,c) =1. Найти сторону третьего по величине такого треугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.