Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
14
Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
12
всего попыток:
17
Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.
Задачу решили:
20
всего попыток:
29
Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов. Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами. Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его: Например: Найдите сумму квадратов S579,420 и C579,421.
Задачу решили:
18
всего попыток:
24
Вундеркинд Вася нашёл очень старый калькулятор, на котором изображались числа, но лишь на 8-ми позициях. Проверяя калькулятор на разных умножениях чисел, он вспомнил простой метод: имеется равенство N*x=111111111 (9 единиц), где х - некая цифра (N легко запоминается). Однако такое произведение не может получиться на старом калькуляторе. Такое умножение N*8 позволяло бы легко проверить находку, но к несчастью, кнопки "2","6","8" не работали! Вдруг Васю осенило проверить находку на правильность деления: М/у=N (у - тоже цифра), а заодно - и умножения N*у=М. Итак, запросто обнаружилась возможность получить работоспособный калькулятор после мелкого ремонта! Кнопку "2" Васе удалось починить почти сразу и проверить умножение (N*2)*2*2=N*8. Пусть m - количество всех разных цифр в записи числа N*8. Чему равно М+m?
Задачу решили:
37
всего попыток:
52
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?
Задачу решили:
22
всего попыток:
65
На стороне ВС треугольника АВС с целочисленными углами в градусах отмечена точка D, CD=AB, угол BAD=30°. Найти наибольший угол ВАС в градусах.
Задачу решили:
30
всего попыток:
40
В прямоугольнике, разделенном на 2 квадрата, проведены полуокружности и в результате построений образовался шестиугольник. Какая доля шестиугольника закрашена?
Задачу решили:
30
всего попыток:
35
Середины противоположных сторон жёлтого правильного шестиугольника соединены непрерывной ломаной со звеньями от 1 до 20 и углами между ними ∏/3, а середины противоположных сторон синего правильного шестиугольника соединены аналогичной ломаной со звеньями от 1 до 21. Найти отношение стороны желтого шестиугольника к стороне синего.
Задачу решили:
28
всего попыток:
49
В правильном треугольнике расположена точка,отстоящая от вершин треугольника на расстоянии 3,4,5. Найдите площадь треугольника. Ответ укажите с точностью до одного знака после запятой.
Задачу решили:
18
всего попыток:
23
В треугольнике АВС со сторонами |ВС|=12, |АС|=85 точка P является точкой пересечения высоты AD и срединного перпендикуляра к стороне АВ. На отрезке ВP взята точка Q так,что AQBC- вогнутый четырехугольник с размерами сторон |BQ|=5, |AQ|=84. Найти площадь треугольника АВС.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|