Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
78
всего попыток:
173
Пусть N! обозначает число равное произведению всех чисел от 1 до N. Будем считать, что 0!=1. Удалим из ряда натуральных чисел все числа у которых сумма факториалов их цифр не равна 111. Последним оставшимся числом будет число состоящее из 111 единиц. А чему равна сумма двух первых оставшихся чисел?
Задачу решили:
113
всего попыток:
177
Каждый урок учитель опрашивает 9 или, если успевает, 10 учеников. Какое минимальное число уроков должно пройти, чтобы все ученики были опрошены одинаковое число раз, если в классе 33 ученика?
Задачу решили:
40
всего попыток:
293
Найдите три средних цифры числа (10604+1)2012.
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
75
всего попыток:
113
Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.
Задачу решили:
38
всего попыток:
295
Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.
Задачу решили:
39
всего попыток:
115
Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления). Чему равен миллионный член этой последовательности?
Задачу решили:
48
всего попыток:
355
На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.
Задачу решили:
179
всего попыток:
282
На углу дома, размеры которого - 6 метров на 4 метра, привязана собака. Длина привязи - 10 метров. Какова площадь участка доступного собаке? Число ∏ (Пи) округлить до 3.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|