Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
28
По кругу записаны 268 целых чисел таким образом, что сумма любых 20 последовательных из них равна 75. Числа 3, 4 и 9 записаны на позициях с номерами 17, 83 и 144 соответственно. Какое число записано на позиции 210?
Задачу решили:
24
всего попыток:
40
В четырехугольнике ABCD выполняются равенства |AB|=|BD|, угол ВАС=30°, угол ВСА=31°, угол DBC=3°. Найти угол BDC в градусах.
Задачу решили:
22
всего попыток:
23
Про четырехугольник ABCD известно следующее: угол DAB равен 150°, cумма углов DAC и ABD равна 120°, разность углов DBC и ABD равна 60°. Найти угол BDC в градусах.
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
21
всего попыток:
29
На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100? Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.
Задачу решили:
22
всего попыток:
25
У прямоугольного листа ABCD угол BAD загибается так, что его вершина А попадает на сторону листа ВС. При этом получаются три прямоугольных треугольника, площади которых образуют арифметическую прогрессию. Если площадь наименьшего из треугольников равна 3, то чему равна площадь наибольшего из них? Ответ округлите до двух знаков после запятой.
Задачу решили:
24
всего попыток:
31
При сгибе прямоугольного листа бумаги с целочисленными сторонами, одна из которой равна 7, были совмещены две противоположные вершины. Найти длину линии сгиба при условии равенства её рациональному числу.
Задачу решили:
28
всего попыток:
30
Периметр прямоугольного треугольника АВС (АВ - гипотенуза) равен 90. Длина катета АС больше 20. Окружность с радиусом 10, центр которой находится на катете ВС, касается прямых АВ и АС. Найти площадь треугольника АВС.
Задачу решили:
21
всего попыток:
26
В бесконечно убывающей последовательности 1; 1/2; 1/3; 1/4; 1/5; ... выберите такие десять чисел, которые образуют арифметическую прогрессию, а их сумма – наибольшая. Введите эту сумму.
Задачу решили:
30
всего попыток:
34
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиуса 2, касающиеся её сторон и друг друга, причем K – одна из точек касания. Найдите площадь трапеции ABCD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|