Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
83
всего попыток:
223
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.
Задачу решили:
12
всего попыток:
118
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.
Задачу решили:
135
всего попыток:
189
Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.
Задачу решили:
121
всего попыток:
263
Какое минимальное число машин, грузоподъёмностью 1,5 тонны каждая, нужно заказать для перевозки нескольких ящиков общим весом 13,5 тонн, если известно, что вес каждого из них не превосходит 350 кг? (Все машины делают только по одному рейсу. Заказанных машин должно хватить независимо от общего количества ящиков, которое заранее неизвестно.)
Задачу решили:
107
всего попыток:
144
Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?
Задачу решили:
54
всего попыток:
103
В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.
Задачу решили:
145
всего попыток:
199
Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.
Задачу решили:
62
всего попыток:
172
Партия в волейболе выигрывается командой, которая первой набирает 25 очков с преимуществом минимум в два очка. В случае равного счёта 24-24 игра продолжается до достижения преимущества в 2 очка (26-24, 27-25 и т.д.). Две партии считаются различными, если строки, в которых выписан порядок набора очков командами, не совпадают. Сколько существует различных партий между командами А и Б, заканчивающихся победой команды А со счётом 32:30?
Задачу решили:
42
всего попыток:
47
В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?
Задачу решили:
170
всего попыток:
208
В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|