Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
54
всего попыток:
105
Известно, что для многочлена 5-й степени p(x): Чему равно p(7)?
Задачу решили:
38
всего попыток:
115
Действительное число x удовлетворяет условию: 1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x. Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. Чему равно p+q?
Задачу решили:
39
всего попыток:
92
Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?
Задачу решили:
23
всего попыток:
57
Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Задачу решили:
45
всего попыток:
158
Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).
Задачу решили:
28
всего попыток:
88
Числовая последовательность задаётся уравнениями | xn | = | xn–1 + 1|; x0=0. Найдите min | x1+x2+…+x2014|.
Задачу решили:
35
всего попыток:
57
Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
33
всего попыток:
47
Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < .... Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|