Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
56
всего попыток:
70
Найдите сумму всех натуральных чисел n = p1p2…pk, у которых все простые множители p1, p2, …, pk различны и число (p1+1)(p2+1)…(pk+1) делится на n.
Задачу решили:
27
всего попыток:
144
Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.
Задачу решили:
80
всего попыток:
98
Если натуральное число разделить на 2, то у него станет на 30 делителей меньше, если поделить на 3, то делителей станет на 35 меньше, а если поделить на 5, то делителей станет меньшена 42 делителя меньше, чем у самого числа. Число имеет вид 2x · 3y · 5z. Чему оно равно?
Задачу решили:
39
всего попыток:
111
Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других. Найти максимальное N.
Задачу решили:
49
всего попыток:
61
Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.
Задачу решили:
21
всего попыток:
227
Пусть S - основание системы счисления, в которой существует не менее 5 чисел 1<D1<D2<D3<D4<D5 таких, что остаток от деления любого числа на Di (1<=i<=5) равен остатку от деления суммы его цифр на Di. Найти 5 минимальных различных значений S и ввести их сумму (в 10-ичной системе счисления).
Задачу решили:
51
всего попыток:
85
В ящике находятся 2013 черных и 2014 белых шаров. Из ящика извлекаются наугад два шара. Если их цвет оказывается одинаковым, то в ящик вместо вынутой пары опускается черный шар, если же цвета различные, то белый шар. Так происходит до тех пор, пока в ящике не останется один шар. Какого он цвета? Введите 1,если шар черный, и 2 –если шар белый.
Задачу решили:
35
всего попыток:
91
Найдите наименьшее и наибольшее k, такое что существуют состоящие из k различных целых чисел множества A и B со следующим свойством: всевозможные суммы пар элементов, один из которых берется из множества A, а второй из множества B, образуют множество {0,1,2, ..., 100}. В ответе укажите сумму найденных значений.
Задачу решили:
79
всего попыток:
82
Дорога из пункта А в пункт В местами ровная, а местами - под гору или в гору. Скорость движения пешехода в гору 4 км/час, по ровному месту – 5 км/час, под гору – 6 км/час. Расстояние между А и В по дороге 9 км, пешеход прошел туда и обратно за 3 часа 41 минуту. Какая часть дороги (км) идет по ровным местам?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|