img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 42
всего попыток: 58
Задача опубликована: 13.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.

Задачу решили: 47
всего попыток: 55
Задача опубликована: 14.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите наибольшее целое число n < 1000 такое, что существуют 2 неотрицательных целых числа, удовлетворяющих свойству:

n = (a2+b2)/(ab-1).

Задачу решили: 49
всего попыток: 72
Задача опубликована: 19.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений уравнения:
x=1/(x-1)+2/(x-2)+...+100/(x-100).

Задачу решили: 19
всего попыток: 96
Задача опубликована: 01.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
100(1+xixj)2 ≤ 99(1+xi2)(1+xj2). 

Задачу решили: 23
всего попыток: 97
Задача опубликована: 15.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

a1+a2+a3+a4+a5=1
a12+a22+a32+a42+a52=1
a13+a23+a33+a43+a53=2
a14+a24+a34+a44+a54=3
a15+a25+a35+a45+a55=5
Найти a16+a26+a36+a46+a56.

Задачу решили: 58
всего попыток: 73
Задача опубликована: 24.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Пусть x и y ненулевые действительные числа такие, что x2+y2=x2y2. Найти максимум (5x+12y+7xy)/(xy).

Задачу решили: 46
всего попыток: 84
Задача опубликована: 26.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Натуральные числа p и q такие, что x2-x-1 является делителем px17-qx16+1. Найдите p.

Задачу решили: 50
всего попыток: 73
Задача опубликована: 02.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность чисел ai такая, что:
a1=2;
an+1=an+pn, где pn - наибольший простой делитель числа an
(первые члены последовательности 2, 4, 6, 9, 12, 15, 20, 25).

Найдите n такое, что an - максимальное 4-значное число этой последовательности.

Задачу решили: 25
всего попыток: 135
Задача опубликована: 05.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти наименьшее число n такое, что (1-1/a1)(1-1/a2)...(1-1/an)=51/2010, где все ai - различные натуральные числа.

Задачу решили: 47
всего попыток: 71
Задача опубликована: 14.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найти минимальное n такое, что количество нулей в конце числа (n+20)!×(n+15)! делится на 2015.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.