img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

Задачу решили: 48
всего попыток: 69
Задача опубликована: 22.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Чтобы стать настоящим нагонским рыбаком, каждый кандидат должен:

- поймать одну рыбу в первый день;

- поймать 4 рыбы и 5 крабов во второй день;

- поймать 25 рыб и 20 крабов в третий день;

- поймать 90 рыб и 99 крабов в четвертый день;

- поймать 329 рыб и 400 крабов в пятый день;

...

и так далее в соответствии с таинственным нагонским законом.

В итоге за первые 11 дней кандидат должен поймать общее количество морской живности, которое выражается формулой: a*3b+1 (a и b - целые числа; a≠3n для всех натуральных n).

Найдите a+b.

Задачу решили: 40
всего попыток: 262
Задача опубликована: 26.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Стрелочные часы с тремя стрелками - часовой, минутной и секундной имеют плавный ход, то есть стрелки движутся плавно, без скачков по делениям. Определите, сколько существует моментов времени (чч:мм:сс:мкс и т.д.) углы между часовой и минутной, минутной и секундной и секундной и часовой составляют ровно 120 градусов.

Задачу решили: 40
всего попыток: 85
Задача опубликована: 19.08.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для натуральных k, n и m известно, что k+n+m=2006. На какое минимальное число нулей заканчивается число k!•n!•m!?

Задачу решили: 70
всего попыток: 83
Задача опубликована: 16.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Найдите сумму всех простых чисел, которые являются одновременно суммой двух простых чисел и разностью двух простых чисел.

Задачу решили: 43
всего попыток: 51
Задача опубликована: 25.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: plush

Найдите максимальную сумму всех простых чисел p, q, r и s таких, что их сумма — простое число. А числа p2 + qs и p2 + qr — квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.) 

Задачу решили: 55
всего попыток: 60
Задача опубликована: 30.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите сумму всех простых p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

Задачу решили: 53
всего попыток: 76
Задача опубликована: 15.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Пусть P(n) - это произведение всех ненулевых цифр натурального числа n. Найдите P(1)+P(2)+...+P(1000).

Задачу решили: 45
всего попыток: 63
Задача опубликована: 20.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg2013

Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.

+ 1
  
Задачу решили: 34
всего попыток: 38
Задача опубликована: 01.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дан набор, состоящий из 2015 чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.  Найдите произведение чисел в наборе.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.