img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 201
всего попыток: 1035
Задача опубликована: 12.04.09 10:07
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

На доске выписаны подряд целые числа от 0 до 1024 — всего 1025 чисел. Двое играют в такую игру. Сначала первый стирает 512 чисел, потом второй стирает 256 чисел, потом первый 128, потом второй 64 и т.д. На десятом ходу второй стирает одно число, после чего первый выплачивает ему разницу между двумя оставшимися числами. Какую сумму он получит при наилучшей стратегии обоих игроков?

Задачу решили: 129
всего попыток: 1028
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов?

(В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)

+ 37
+ЗАДАЧА 66. Хитрая улитка II (Н.Н.Константинов)
  
Задачу решили: 164
всего попыток: 717
Задача опубликована: 23.04.09 09:56
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 198
всего попыток: 439
Задача опубликована: 27.04.09 21:20
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?

Задачу решили: 132
всего попыток: 602
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?

Задачу решили: 220
всего попыток: 486
Задача опубликована: 09.05.09 08:50
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)

Задачу решили: 180
всего попыток: 652
Задача опубликована: 10.05.09 12:19
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В круглый пирог диаметра 35 см запечён металлический рубль диаметра 2 см. На какое минимальное число кусков нужно разрезать пирог, чтобы гарантированно найти монету, если известно, что она расположена в пироге горизонтально? (Разрешается делать только прямолинейные разрезы. Монета считается обнаруженной, если она попадает под нож.) 

Задачу решили: 157
всего попыток: 570
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: по мотивам задачи Всесоюзной математической о...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?

Задачу решили: 108
всего попыток: 494
Задача опубликована: 16.05.09 10:19
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: lg

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

 

Задачу решили: 149
всего попыток: 200
Задача опубликована: 25.05.09 23:32
Прислал: demiurgos img
Источник: П.В.Маковецкий "Смотри в корень!"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.)

Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.