Лента событий:
vochfid решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
59
всего попыток:
75
Последовательности (an) и (bn) заданы условиями an+3 = an+2+2an+1+an при n ? 0, a0 = 1, a1 = 2, a2 = 3; bn+3 = bn+2+2bn+1+bn при n ? 0, b0 = 3, b1 = 2, b2 = 1. Сколько существует чисел, встречающихся в обеих последовательностях?
Задачу решили:
45
всего попыток:
55
Натуральное число anan-1...a1 назовём полным, если для любого набора номеров (возможно, одного) его разрядов сумма этих номеров равна сумме некоторых (возможно, одной) цифр самого числа (например, a4a3a2a1=3116 - полное число). Найдите наибольшее полное число.
Задачу решили:
62
всего попыток:
89
Назовём шестизначное число эльфийским, если модуль разности суммы первых трёх цифр и последних трёх цифр делится на 11. Сколько существует эльфийских шестизначных чисел?
Задачу решили:
63
всего попыток:
89
Найдите сумму всех натуральных p таких, что число 4x2 + p — простое при всех x = 0, 1, …, p-1.
Задачу решили:
37
всего попыток:
67
На доске написано 100 единиц. За один ход разрешается стереть любое из чисел и одновременно написать два новых вдвое меньших числа. При каком наибольшем натуральном k можно гарантировать, что в наборе в любой момент времени найдётся k равных чисел?
Задачу решили:
81
всего попыток:
94
Натуральное число n возвели в некоторую натуральную степень, после чего у результата стерли последние две цифры и снова получили число n. Найдите максимально возможное значение числа n.
Задачу решили:
47
всего попыток:
59
Даны n действительных чисел a1, a2, …, an. Известно, что все попарные суммы ai+aj (i ≠ j) – различны и в порядке возрастания образуют арифметическую прогрессию. Найдите максимально возможное n?
Задачу решили:
101
всего попыток:
122
Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.
Задачу решили:
68
всего попыток:
115
Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.
Задачу решили:
55
всего попыток:
65
Любое простое число вида p=4k+1 можно единственным способом представить в виде: p = a² + b², где a<b - целые положительные числа. Например: 165100009 = 5520² + 11603². Квадраты таких простых чисел также можно представить единственным способом в виде: p² = x² + y², где x<y - целые положительные числа. Найдите два целых положительных числа x<y, для которых выполняется: 165100009² = x² + y². В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|