img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Vkorsukov добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 86
всего попыток: 183
Задача опубликована: 18.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: nellyk

На острове находится военная база. Каждый из солдат, служащих на этой базе, однажды сделал два заявления: 1) на базе нет и ста солдат, которые стреляют лучше меня; 2) по крайней мере тысяча солдат на базе владеют приёмами рукопашного боя лучше, чем я. Известно, что каждый из солдат либо всегда говорит правду, либо всегда лжёт. Кроме того, меткость стрельбы у всех солдат разная, как и уровень владения рукопашным боем. Сколько солдат служат на базе?

Задачу решили: 108
всего попыток: 229
Задача опубликована: 07.12.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Angelina

В отряде восемь бойцов. Каждую ночь трое уходят в разведку, причём, никакие двое бойцов не должны ходить в разведку вместе дважды. Найдите максимальное возможное число ночей, в которые отряд может посылать разведчиков.

Задачу решили: 45
всего попыток: 285
Задача опубликована: 01.05.13 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: nellyk

Вася старается раскрасить клетки квадрата 5х5 так, чтобы в любом его квадрате 3х3 было ровно 4 закрашенных клетки. После успешной раскраски он считает сколько клеток осталось не закрашенными. Сколько различных значений может получить Вася? В качестве ответа введите сумму полученных значений.

 

Задачу решили: 58
всего попыток: 81
Задача опубликована: 15.05.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: perfect_result... (Александр Опарин)

На острове живёт 2013 аборигенов, каждый из которых либо лжец (лжецы всегда лгут), либо рыцарь (рыцари всегда говорят правду). Некоторые аборигены знакомы друг с другом, причём каждый лжец имеет знакомого среди рыцарей, а каждый рыцарь знакомого среди лжецов. Каждый абориген сделал заявление: "Среди моих знакомых лжецов больше, чем рыцарей". Затем правитель острова казнил одного из аборигенов, и после этого каждый абориген сделал заявление: "Среди моих знакомых рыцарей больше, чем лжецов". Сколько рыцарей было на острове изначально?

Задачу решили: 39
всего попыток: 111
Задача опубликована: 09.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других.

Найти максимальное N.

Задачу решили: 38
всего попыток: 117
Задача опубликована: 23.06.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

У бедного мальчика Саши всего 300 монет, и к тому же ровно одна из них фальшивая (легче настоящей). У жадного мальчика Кости есть весы, но за каждое взвешивание он берет с Саши плату: два рубля, если перевесила левая чашка, и один рубль при любом другом исходе. Какую наименьшую сумму должен приготовить Саша, чтобы заведомо определить фальшивую монету с помощью Костиных весов?

Задачу решили: 18
всего попыток: 38
Задача опубликована: 20.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zmerch

18 монет пронумерованы с 1 до 18. Первому игроку известно, что монеты с номерами 1,2,...,9 настоящие, а монеты с номерами 10,11,..,18 - фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,9 - настоящие, а 10,11,..,18 - фальшивые?

Задачу решили: 47
всего попыток: 71
Задача опубликована: 23.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).

+ 4
  
Задачу решили: 40
всего попыток: 91
Задача опубликована: 29.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

Задачу решили: 39
всего попыток: 68
Задача опубликована: 16.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.