Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
105
Найти количество действительных решений уравнения x3-[x3]-{x}3=0 для 1≤x<2015, где [x] и {x} - целая и дробная части числа x.
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Задачу решили:
28
всего попыток:
41
Определите сумму всех действительных значений параметра a, при которых для любого натурального n выполняется тождество
Задачу решили:
67
всего попыток:
88
Известно, что [x]*{x}=178, где [x] и {x} - соответственно целая и дробная части x, найти [x2]-[x]2.
Задачу решили:
47
всего попыток:
49
Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.
Задачу решили:
38
всего попыток:
53
Найти все такие f(x), что (x-1)f((x+1)/(x-1))-f(x)=x для x≠1. В ответе укажите сумму значений этих функций в точке x=2016
Задачу решили:
44
всего попыток:
49
Числовая последовательность a0, a1, a2, ... такова, что при всех неотрицательных m и n (m >= n) выполняется соотношение am+n + am−n = 1/2(a2m + a2n). Найдите a2016, если a1 = 1.
Задачу решили:
43
всего попыток:
53
Рассматриваются всевозможные квадратичные функции f(x) = ax2 + bx + c, такие, что a < b и f(x) >= 0 для всех x. Какое наименьшее значение может принимать выражение (a + b + c)/(b − a)?
Задачу решили:
50
всего попыток:
80
Пусть f(x) многочлен такой, что f(f(x))-x2=xf(x). Найти f(-1000).
Задачу решили:
41
всего попыток:
45
Найти сумму всех α таких, что существует функция f: R → R, отличная от константы, такая, что f(α(x + y)) = f(x) + f(y) ?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|