img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 4
  
Задачу решили: 42
всего попыток: 54
Задача опубликована: 25.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 03.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?

Задачу решили: 55
всего попыток: 57
Задача опубликована: 08.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: georgp

На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC — точки E и M так, что DA+AE = KC+CM = AB. Найдите угол между прямыми DM и KE (в градусах).

Задачу решили: 33
всего попыток: 59
Задача опубликована: 24.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеется квадрат клетчатой бумаги размером 102×102 клеток и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? (Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.)

Задачу решили: 40
всего попыток: 46
Задача опубликована: 11.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и  последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.

+ 2
  
Задачу решили: 35
всего попыток: 43
Задача опубликована: 23.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На сторонах BC, CA, AB треугольника ABC выбраны соответственно точки A1, B1, C1 так, что медианы A1A2, B1B2, C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC, CA. Найти отношение длин |A1B|/|CA1|.

Задачу решили: 23
всего попыток: 28
Задача опубликована: 01.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Какое наименьшее число сторон может иметь нечетноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

Задачу решили: 40
всего попыток: 44
Задача опубликована: 13.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.

Задачу решили: 34
всего попыток: 47
Задача опубликована: 15.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Задачу решили: 34
всего попыток: 60
Задача опубликована: 09.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.