img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 41
всего попыток: 75
Задача опубликована: 10.07.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18.

Найти X+Y.

Задачу решили: 28
всего попыток: 199
Задача опубликована: 30.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для различных натуральных чисел x, y и z известно, что x+y, y+z, x+z и x+y+z являются полными квадратами. Найти минимально возможное из чисел x, y, z.

Задачу решили: 33
всего попыток: 171
Задача опубликована: 11.09.17 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Петя пишет на доске 4 произвольных простых числа, а Вася, видя эти числа, пишет 4 различных составных числа таких, что их произведение в 1000 раз больше произведения Петиных чисел, а сумма по возможности минимальна. Какая минимальная сумма Васиных чисел может получиться в этой игре?

Задачу решили: 39
всего попыток: 76
Задача опубликована: 16.10.17 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найдите положительный остаток при делении 666666777777 на 1464851.

Задачу решили: 43
всего попыток: 85
Задача опубликована: 15.11.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Числа от 1 до 100 разделены на множества так, что в каждом множестве любое число не делится на другие числа множества. Какое минимальное число таких множеств возможно?

Задачу решили: 59
всего попыток: 70
Задача опубликована: 11.12.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число N имеет ровно 10 делителей, 2N - ровно 15 делителей, 3N - ровно 20 делителей. Сколько делителей у числа 4N?

Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.  

Задачу решили: 41
всего попыток: 60
Задача опубликована: 04.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть для любого натурального n: f(n)=nf(n-1), f(1)=1. Найти две последние цифры числа f(2018).

Задачу решили: 26
всего попыток: 67
Задача опубликована: 06.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем непустое подмножество A ⊂ Ζ целых чисел набором типа N, если:
а) для любого n ∈ A, -n ∈ A;
б) для любого n ∈ A, -n+N ∈ A;
в) для любых n, m ∈ A, n+2m ∈ A.

Сколько существует различных наборов типа 18?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.